Math 120A: Homework 3

Due: October 24, 2014

1. Read sections 2.2-3, 3.1 in Pressley.
2. Do problems 2.1.1, 2.1.2, 2.1.4, 2.2.3, 2.2.5, 2.2.8, and 2.2.9 in Pressley.
[Note 1: It is definitely possible to do too much work for 2.1.1. What is the first thing you should check when beginning your computations?]
[Note 2: It may be helpful to do the question below before 2.2.3.]
3. An isometry $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a map that preserves distance, i.e. $\|M(\mathbf{v})-M(\mathbf{w})\|=$ $\|\mathbf{v}-\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.

- Let M be an isometry with $M(\mathbf{0})=\mathbf{0}$. Let \mathbf{e}_{i} be the i th standard unit vector, so $\mathbf{e}_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ with 1 in the i th position. Show that if $M\left(e_{i}\right)=e_{i}$ for all i, then M is the identity. [Hint: Expand the equality $\left\|\mathbf{v}-\mathbf{e}_{i}\right\|^{2}=\left\|F(\mathbf{v})-\mathbf{e}_{i}\right\|^{2}$.]
- Let M be an isometry with $M(\mathbf{0})=\mathbf{0}$. Show that $\mathbf{v}_{i}=M\left(\mathbf{e}_{i}\right)$ is a unit vector and $\mathbf{v}_{i} \perp \mathbf{v}_{j}$. [Hint: another expansion.] Using part 1, argue that M must be the linear transformation determined by $M\left(\mathbf{e}_{i}\right)=\mathbf{v}_{\mathbf{i}}$.
- Show that M is an isometry $\Leftrightarrow M$ can be written as $Q \mathbf{x}+\mathbf{a}$, where $\mathbf{a}=M(\mathbf{0})$ and Q is an orthogonal matrix, i.e. $Q^{t} Q=1$. Note this implies $\operatorname{det} Q= \pm 1$; we say M is direct if $\operatorname{det} Q=1$ and opposite if $\operatorname{det} Q=-1$.
- Show that an isometry of the plane can be expressed as either $M(x)=\rho_{\theta} \mathbf{x}+T_{\mathbf{a}}$ or $\rho_{\theta} \circ r(\mathbf{x})+T_{\mathbf{a}}$, where $T_{\mathbf{a}}(\mathbf{x})=\mathbf{x}+\mathbf{a}$ is translation by $\mathbf{a}, \rho_{\theta}$ is rotation counterclockwise by θ, and r is a reflection across the x-axis. [Hint: What are the matrices of these transformations? Compare to the orthogonal matrices of dimension two.]

Note that the composition $\rho_{\theta} \circ r$ can also be described a reflection across a line which intersects the x-axis at an angle θ.

