Math 120A: Homework 3

Due: October 24, 2014

- 1. Read sections 2.2-3, 3.1 in Pressley.
- 2. Do problems 2.1.1, 2.1.2, 2.1.4, 2.2.3, 2.2.5, 2.2.8, and 2.2.9 in Pressley.

[Note 1: It is definitely possible to do too much work for 2.1.1. What is the first thing you should check when beginning your computations?]

[Note 2: It may be helpful to do the question below before 2.2.3.]

- 3. An isometry $M : \mathbb{R}^n \to \mathbb{R}^n$ is a map that preserves distance, i.e. $||M(\mathbf{v}) M(\mathbf{w})|| = ||\mathbf{v} \mathbf{w}||$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
 - Let M be an isometry with $M(\mathbf{0}) = \mathbf{0}$. Let \mathbf{e}_i be the *i*th standard unit vector, so $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$ with 1 in the *i*th position. Show that if $M(e_i) = e_i$ for all *i*, then M is the identity. [Hint: Expand the equality $||\mathbf{v} \mathbf{e}_i||^2 = ||F(\mathbf{v}) \mathbf{e}_i||^2$.]
 - Let M be an isometry with $M(\mathbf{0}) = \mathbf{0}$. Show that $\mathbf{v}_i = M(\mathbf{e}_i)$ is a unit vector and $\mathbf{v}_i \perp \mathbf{v}_j$. [Hint: another expansion.] Using part 1, argue that M must be the linear transformation determined by $M(\mathbf{e}_i) = \mathbf{v}_i$.
 - Show that M is an isometry $\Leftrightarrow M$ can be written as $Q\mathbf{x} + \mathbf{a}$, where $\mathbf{a} = M(\mathbf{0})$ and Q is an orthogonal matrix, i.e. $Q^tQ = 1$. Note this implies det $Q = \pm 1$; we say M is direct if det Q = 1 and opposite if det Q = -1.
 - Show that an isometry of the plane can be expressed as either $M(x) = \rho_{\theta} \mathbf{x} + T_{\mathbf{a}}$ or $\rho_{\theta} \circ r(\mathbf{x}) + T_{\mathbf{a}}$, where $T_{\mathbf{a}}(\mathbf{x}) = \mathbf{x} + \mathbf{a}$ is translation by \mathbf{a} , ρ_{θ} is rotation counterclockwise by θ , and r is a reflection across the *x*-axis. [Hint: What are the matrices of these transformations? Compare to the orthogonal matrices of dimension two.]

Note that the composition $\rho_{\theta} \circ r$ can also be described a reflection across a line which intersects the x-axis at an angle θ .